Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Microbiol Spectr ; 11(6): e0177823, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819116

ABSTRACT

IMPORTANCE: In the expanding market of recombinant proteins, microbial cell factories such as Bacillus subtilis are key players. Microbial cell factories experience secretion stress during high-level production of secreted proteins, which can negatively impact product yield and cell viability. The CssRS two-component system and CssRS-regulated quality control proteases HtrA and HtrB play critical roles in the secretion stress response. HtrA has a presumptive dual function in protein quality control by exerting both chaperone-like and protease activities. However, its potential role as a chaperone has not been explored in B. subtilis. Here, we describe for the first time the beneficial effects of proteolytically inactive HtrA on α-amylase yields and overall bacterial fitness.


Subject(s)
Bacterial Proteins , Peptide Hydrolases , Peptide Hydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Molecular Chaperones/metabolism
2.
Proteomics ; : e2300294, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37772677

ABSTRACT

In proteomics, fast, efficient, and highly reproducible sample preparation is of utmost importance, particularly in view of fast scanning mass spectrometers enabling analyses of large sample series. To address this need, we have developed the web application MassSpecPreppy that operates on the open science OT-2 liquid handling robot from Opentrons. This platform can prepare up to 96 samples at once, performing tasks like BCA protein concentration determination, sample digestion with normalization, reduction/alkylation and peptide elution into vials or loading specified peptide amounts onto Evotips in an automated and flexible manner. The performance of the developed workflows using MassSpecPreppy was compared with standard manual sample preparation workflows. The BCA assay experiments revealed an average recovery of 101.3% (SD: ± 7.82%) for the MassSpecPreppy workflow, while the manual workflow had a recovery of 96.3% (SD: ± 9.73%). The species mix used in the evaluation experiments showed that 94.5% of protein groups for OT-2 digestion and 95% for manual digestion passed the significance thresholds with comparable peptide level coefficient of variations. These results demonstrate that MassSpecPreppy is a versatile and scalable platform for automated sample preparation, producing injection-ready samples for proteomics research.

3.
Eur J Neurol ; 30(4): 1048-1058, 2023 04.
Article in English | MEDLINE | ID: mdl-36504168

ABSTRACT

BACKGROUND AND PURPOSE: Idiopathic facial palsy (IFP) accounts for over 60% of peripheral facial palsy (FP) cases. The cause of IFP remains to be determined. Possible etiologies are nerve swelling due to inflammation and/or viral infection. In this study, we applied an integrative mass spectrometry approach to identify possibly altered protein patterns in the cerebrospinal fluid (CSF) of IFP patients. METHODS: We obtained CSF samples from 34 patients with FP. In four patients, varicella-zoster virus was the cause (VZV-FP). Among the 30 patients diagnosed with IFP, 17 had normal CSF parameters, five had slightly elevated CSF cell counts and normal or elevated CSF protein, and eight had normal CSF cell counts but elevated CSF protein. Five patients with primary headache served as controls. All samples were tested for viral pathogens by PCR and subjected to liquid chromatography tandem mass spectrometry and bioinformatics analysis and multiplex cytokine/chemokine arrays. RESULTS: All CSF samples, except those from VZV-FP patients, were negative for all tested pathogens. The protein composition of CSF samples from IFP patients with normal CSF was comparable to controls. IFP patients with elevated CSF protein showed dysregulated proteins involved in inflammatory pathways, findings which were similar to those in VZV-FP patients. Multiplex analysis revealed similarly elevated cytokine levels in the CSF of IFP patients with elevated CSF protein and VZV-FP. CONCLUSIONS: Our study revealed a subgroup of IFP patients with elevated CSF protein that showed upregulated inflammatory pathways, suggesting an inflammatory/infectious cause. However, no evidence for an inflammatory cause was found in IFP patients with normal CSF.


Subject(s)
Bell Palsy , Facial Paralysis , Humans , Facial Paralysis/etiology , Facial Nerve , Proteomics , Bell Palsy/complications , Bell Palsy/diagnosis , Herpesvirus 3, Human , Cytokines , Cerebrospinal Fluid
4.
J Oral Microbiol ; 14(1): 2138251, 2022.
Article in English | MEDLINE | ID: mdl-36338832

ABSTRACT

Background: Dental plaque consists of a diverse microbial community embedded in a complex structure of exopolysaccharides. Dental biofilms form a natural barrier against pathogens but lead to oral diseases in a dysbiotic state. Objective: Using a metaproteome approach combined with a standard plaque-regrowth study, this pilot study examined the impact of different concentrations of lactoperoxidase (LPO) on early plaque formation, and active biological processes. Design: Sixteen orally healthy subjects received four local treatments as a randomized single-blind study based on a cross-over design. Two lozenges containing components of the LPO-system in different concentrations were compared to a placebo and Listerine®. The newly formed dental plaque was analyzed by mass spectrometry (nLC-MS/MS). Results: On average 1,916 metaproteins per sample were identified, which could be assigned to 116 genera and 1,316 protein functions. Listerine® reduced the number of metaproteins and their relative abundance, confirming the plaque inhibiting effect. The LPO-lozenges triggered mainly higher metaprotein abundances of early and secondary colonizers as well as bacteria associated with dental health but also periodontitis. Functional information indicated plaque biofilm growth. Conclusion: In conclusion, the mechanisms on plaque biofilm formation of Listerine® and the LPO-system containing lozenges are different. In contrast to Listerine®, the lozenges led to a higher bacterial diversity.

5.
Metabolomics ; 18(6): 39, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35687250

ABSTRACT

INTRODUCTION: Respiratory tract infections are a worldwide health problem for humans and animals. Different cell types produce lipid mediators in response to infections, which consist of eicosanoids like hydroxyeicosatetraenoic acids (HETEs) or oxylipins like hydroxydocosahexaenoic acids (HDHAs). Both substance classes possess immunomodulatory functions. However, little is known about their role in respiratory infections. OBJECTIVES: Here, we aimed to analyze the lipid mediator imprint of different organs of C57BL/6J mice after intranasal mono-infections with Streptococcus pneumoniae (pneumococcus), Staphylococcus aureus or Influenza A virus (IAV) as wells as pneumococcal-IAV co-infection. METHODS: C57BL/6J mice were infected with different pathogens and lungs, spleen, and plasma were collected. Lipid mediators were analyzed using HPLC-MS/MS. In addition, spatial-distribution of sphingosine 1-phosphate (S1P) and ceramide 1-phosphates (C1P) in tissue samples was examined using MALDI-MS-Imaging. The presence of bacterial pathogens in the lung was confirmed via immunofluorescence staining. RESULTS: We found IAV specific changes for different HDHAs and HETEs in mouse lungs as well as enhanced levels of 20-HETE in severe S. aureus infection. Moreover, MALDI-MS-Imaging analysis showed an accumulation of C1P and a decrease of S1P during co-infection in lung and spleen. Long chain C1P was enriched in the red and not in the white pulp of the spleen. CONCLUSIONS: Lipid mediator analysis showed that host synthesis of bioactive lipids is in part specific for a certain pathogen, in particular for IAV infection. Furthermore, MS-Imaging displayed great potential to study infections and revealed changes of S1P and C1P in lungs and spleen of co-infected animals, which was not described before.


Subject(s)
Coinfection , Influenza A virus , Respiratory Tract Infections , Animals , Metabolomics , Mice , Mice, Inbred C57BL , Staphylococcus aureus , Streptococcus pneumoniae , Tandem Mass Spectrometry
6.
Sci Rep ; 12(1): 7569, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534617

ABSTRACT

The tegument, as the surface layer of adult male and female Schistosoma spp. represents the protective barrier of the worms to the hostile environment of the host bloodstream. Here we present the first comparative analysis of sex-specific tegument proteins of paired or virgin Schistosoma mansoni. We applied a new and highly sensitive workflow, allowing detection of even low abundance proteins. Therefore, a streptavidin-biotin affinity purification technique in combination with single pot solid-phase enhanced sample preparation was established for subsequent LC-MS/MS analysis. We were able to identify 1519 tegument proteins for male and female virgin and paired worms and categorized them by sex. Bioinformatic analysis revealed an involvement of female-specific tegument proteins in signaling pathways of cellular processes and antioxidant mechanisms. Male-specific proteins were found to be enriched in processes linked to phosphorylation and signal transduction. This suggests a task sharing between the sexes that might be necessary for survival in the host. Our datasets provide a basis for further studies to understand and ultimately decipher the strategies of the two worm sexes to evade the immune system.


Subject(s)
Proteome , Schistosoma mansoni , Animals , Chromatography, Liquid , Female , Helminth Proteins/metabolism , Male , Proteome/metabolism , Schistosoma mansoni/metabolism , Tandem Mass Spectrometry
7.
Haematologica ; 107(4): 947-957, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35045692

ABSTRACT

Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.


Subject(s)
COVID-19 , Vaccines , Ad26COVS1 , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2
8.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502122

ABSTRACT

Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a valuable source of biomarkers. However, for EVs to be used as biomarkers in clinical practice, simple, comparable, and reproducible analytical methods must be applied. Although progress is being made in EV separation methods for human biofluids, the implementation of EV assays for clinical diagnosis and common guidelines are still lacking. We conducted a comprehensive analysis of established EV separation techniques from human serum and plasma, including ultracentrifugation and size exclusion chromatography (SEC), followed by concentration using (a) ultracentrifugation, (b) ultrafiltration, or (c) precipitation, and immunoaffinity isolation. We analyzed the size, number, protein, and miRNA content of the obtained EVs and assessed the functional delivery of EV cargo. Our results demonstrate that all methods led to an adequate yield of small EVs. While no significant difference in miRNA content was observed for the different separation methods, ultracentrifugation was best for subsequent flow cytometry analysis. Immunoaffinity isolation is not suitable for subsequent protein analyses. SEC + ultracentrifugation showed the best functional delivery of EV cargo. In summary, combining SEC with ultracentrifugation gives the highest yield of pure and functional EVs and allows reliable analysis of both protein and miRNA contents. We propose this combination as the preferred EV isolation method for biomarker studies from human serum or plasma.


Subject(s)
Cell Fractionation , Chemical Fractionation , Extracellular Vesicles/metabolism , Biological Transport , Biomarkers , Cell Fractionation/methods , Chemical Fractionation/methods , Extracellular Vesicles/ultrastructure , Flow Cytometry , Humans , Liquid Biopsy/methods , Proteins/metabolism
9.
Methods Mol Biol ; 2327: 221-238, 2021.
Article in English | MEDLINE | ID: mdl-34410648

ABSTRACT

Analysis using mass spectrometry enables the characterization of metaproteomes in their native environments and overcomes the limitation of proteomics of pure cultures. Metaproteomics is a promising approach to link functions of currently actively expressed genes to the phylogenetic composition of the microbiome in their habitat. In this chapter, we describe the preparation of saliva samples and tongue swabs for nLC-MS/MS measurements and their bioinformatic analysis based on the Trans-Proteomic Pipeline and Prophane to study the oral microbiome .


Subject(s)
Proteome , Proteomics , Phylogeny , Saliva , Tandem Mass Spectrometry , Tongue
10.
ACS Infect Dis ; 6(8): 2279-2290, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32579327

ABSTRACT

The primary barrier that protects our lungs against infection by pathogens is a tightly sealed layer of epithelial cells. When the integrity of this barrier is disrupted as a consequence of chronic pulmonary diseases or viral insults, bacterial pathogens will gain access to underlying tissues. A major pathogen that can take advantage of such conditions is Staphylococcus aureus, thereby causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human epithelium, especially nonpolarization and fibrogenesis during regeneration using an in vitro infection model. The infective process was monitored by quantification of the epithelial cell and bacterial populations, fluorescence microscopy, and mass spectrometry. The results uncover differences in bacterial internalization and population dynamics that correlate with the outcome of infection. Protein profiling reveals that, irrespective of the polarization state of the epithelial cells, the invading bacteria mount similar responses to adapt to the intracellular milieu. Remarkably, a bacterial adaptation that was associated with the regeneration state of the epithelial cells concerned the early upregulation of proteins controlled by the redox-responsive regulator Rex when bacteria were confronted with a polarized cell layer. This is indicative of the modulation of the bacterial cytoplasmic redox state to maintain homeostasis early during infection even before internalization. Our present observations provide a deeper insight into how S. aureus can take advantage of a breached epithelial barrier and show that infected epithelial cells have limited ability to respond adequately to staphylococcal insults.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Epithelial Cells , Epithelium , Humans , Regeneration
11.
Environ Microbiol ; 22(8): 3266-3286, 2020 08.
Article in English | MEDLINE | ID: mdl-32419322

ABSTRACT

The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Betaine/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Profiling , Proteome , Salinity , Sodium Chloride/pharmacology
12.
J Infect Dis ; 222(10): 1702-1712, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32445565

ABSTRACT

BACKGROUND: In tissue infections, adenosine triphosphate (ATP) is released into extracellular space and contributes to purinergic chemotaxis. Neutrophils are important players in bacterial clearance and are recruited to the site of tissue infections. Pneumococcal infections can lead to uncontrolled hyperinflammation of the tissue along with substantial tissue damage through excessive neutrophil activation and uncontrolled granule release. We aimed to investigate the role of ATP in neutrophil response to pneumococcal infections. METHODS: Primary human neutrophils were exposed to the pneumococcal strain TIGR4 and its pneumolysin-deficient mutant or directly to different concentrations of recombinant pneumolysin. Neutrophil activation was assessed by measurement of secreted azurophilic granule protein resistin and profiling of the secretome, using mass spectrometry. RESULTS: Pneumococci are potent inducers of neutrophil degranulation. Pneumolysin was identified as a major trigger of neutrophil activation. This process is partially lysis independent and inhibited by ATP. Pneumolysin and ATP interact with each other in the extracellular space leading to reduced neutrophil activation. Proteome analyses of the neutrophil secretome confirmed that ATP inhibits pneumolysin-dependent neutrophil activation. CONCLUSIONS: Our findings suggest that despite its cytolytic activity, pneumolysin serves as a potent neutrophil activating factor. Extracellular ATP mitigates pneumolysin-induced neutrophil activation.


Subject(s)
Adenosine Triphosphate/metabolism , Neutrophil Activation/drug effects , Pneumococcal Infections/metabolism , Streptolysins/adverse effects , Bacterial Proteins/adverse effects , Cell Death , Humans , Neutrophils/metabolism , Neutrophils/microbiology , Streptococcus pneumoniae
13.
mBio ; 11(2)2020 03 24.
Article in English | MEDLINE | ID: mdl-32209695

ABSTRACT

Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.IMPORTANCE Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila.


Subject(s)
Galectins/genetics , Host-Pathogen Interactions , Legionella pneumophila/physiology , Macrophages/microbiology , MicroRNAs/genetics , Myxovirus Resistance Proteins/genetics , Galectins/metabolism , Gene Expression Regulation/immunology , Humans , Legionnaires' Disease/microbiology , Macrophages/immunology , MicroRNAs/immunology , Myxovirus Resistance Proteins/metabolism , Proteome , Signal Transduction , THP-1 Cells , Virulence Factors
14.
Proc Natl Acad Sci U S A ; 117(12): 6752-6761, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32144140

ABSTRACT

A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome.


Subject(s)
Antineoplastic Agents/pharmacology , Catechols/pharmacology , Cellular Reprogramming , Cupriavidus necator/genetics , Escherichia coli/genetics , Pseudomonas putida/genetics , Synthetic Biology/methods , Cell Proliferation , Chromosomes, Bacterial , Cupriavidus necator/metabolism , Drug Delivery Systems , Escherichia coli/metabolism , Gene Regulatory Networks , Genetic Engineering , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Pseudomonas putida/metabolism , Tumor Cells, Cultured
15.
J Proteomics ; 214: 103627, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31899367

ABSTRACT

A combined OMICS screening approach of human plasma and serum was used to characterize protein and metabolome signatures displaying association to severity of Community-acquired pneumonia (CAP). 240 serum and BD P100 EDTA plasma samples from patients diagnosed with CAP, collected during the day of enrolment to the hospital, were analyzed by a metabolomic and proteomic approach, respectively. Disease severity of CAP patients was stratified using the Sequential Organ Failure Assessment (SOFA) score. Quantitative proteome and metabolome data, derived by LC-MS/MS, were associated to SOFA and specific parameters of SOFA using linear regression models adjusted for age, BMI, sex, smoking and technical variables. Both proteome and metabolome profiling revealed remarkable strong changes in plasma and serum composition in relation to severity of CAP. Proteins and metabolites displaying SOFA associated levels are involved in immune response, particularly in processes of lipid metabolism. Proteins, which show an association to SOFA score, are involved in acute phase response, coagulation, complement activation and inflammation. Many of these metabolites and proteins displayed not only associations to SOFA, but also to parameters of SOFA score, which likely reflect the strong influence of lung-, liver-, kidney- and heart-dysfunction on the metabolome and proteome patterns. SIGNIFICANCE: Community-acquired pneumonia is the most frequent infection disease with high morbidity and mortality. So far, only few studies focused on the identification of proteins or metabolites associated to severity of CAP, often based on smaller sample sets. A screening for new diagnostic markers requires extensive sample collections in combination with high quality clinical data. To characterize the proteomic and metabolomics pattern associated to severity of CAP we performed a combined metabolomics and proteomic approach of serum and plasma sample from a multi-center clinical study focused on patients with CAP, requiring hospitalization. The results of this association study of omics data to the SOFA score enable not only an interpretation of changes in molecular patterns with severity of CAP but also an assignment of altered molecules to dysfunctions of respiratory, renal, coagulation, cardiovascular systems as well as liver.


Subject(s)
Pneumonia , Proteome , Chromatography, Liquid , Humans , Metabolome , Pneumonia/diagnosis , Prognosis , Proteomics , Severity of Illness Index , Tandem Mass Spectrometry
16.
J Oral Microbiol ; 11(1): 1654786, 2019.
Article in English | MEDLINE | ID: mdl-31497257

ABSTRACT

Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.

17.
ACS Synth Biol ; 8(9): 2141-2151, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31375026

ABSTRACT

It has been widely debated whether transposable elements have a positive or a negative effect on their host cells. This study demonstrated that transposable elements, specifically insertion sequences (ISs), can adopt a defensive role in Escherichia coli. In three different E. coli strains (S17, DH5α, and Nissle 1917), IS1 and IS10 rapidly disrupted the I-CeuI gene (encoding I-CeuI endonuclease) on the plasmid pLO11-ICeuI as early as the first generation, despite the gene-circuit being under control of an arabinose promoter. Proteomics analysis showed that the protein abundance profile of E. coli DH5α with pLO11-ICeuI in the fifth generation was nearly opposite to that of control strain (E. coli with pLO11, no I-CeuI). The DNA damage caused by the leaky expression of I-CeuI was enough to trigger a SOS response and alter lipid synthesis, ribosomal activity, RNA/DNA metabolism, central dogma and cell cycle processes in E. coli DH5α. After the ISs disrupted the expression of I-CeuI, cells fully recovered by the 31st generation had a protein abundance profile similar to that of the control strain. This study showed that ISs readily mutated a harmful gene which subsequently restored host fitness. These observations have implications for the stability of designed gene circuits in synthetic biology.


Subject(s)
DNA Transposable Elements/genetics , Escherichia coli/genetics , Endodeoxyribonucleases/analysis , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Escherichia coli Proteins/analysis , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Plasmids/genetics , Plasmids/metabolism , Proteomics , Synthetic Biology
18.
Anal Chem ; 91(12): 7729-7737, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31117406

ABSTRACT

The intracellular pathogen Salmonella enterica has evolved an array of traits for propagation and invasion of the intestinal layers. It remains largely elusive how Salmonella adjusts its metabolic states to survive inside immune host cells. In this study, single-cell Raman biotechnology combined with deuterium isotope probing (Raman-DIP) have been applied to reveal metabolic changes of the typhoidal Salmonella Typhi Ty2, the nontyphoidal Salmonella Typhimurium LT2, and a clinical isolate Typhimurium D23580. By initially labeling the Salmonella strains with deuterium, we employed reverse labeling to track their metabolic changes in the time-course infection of THP-1 cell line, human monocyte-derived dendritic cells (MoDCs) and macrophages (Mf). We found that, in comparison with a noninvasive serovar, the invasive Salmonella strains Ty2 and D23580 have downregulated metabolic activity inside human macrophages and dendritic cells and used lipids as alternative carbon source, perhaps a strategy to escape from the host immune response. Proteomic analysis using high sensitivity mass spectrometry validated the findings of Raman-DIP analysis.


Subject(s)
Macrophages/microbiology , Metabolome , Salmonella typhi/metabolism , Spectrum Analysis, Raman/methods , Cell Line , Deuterium/chemistry , Deuterium/metabolism , Down-Regulation , Humans , Isotope Labeling , Macrophages/cytology , Macrophages/metabolism , Principal Component Analysis , Single-Cell Analysis
19.
Mol Cell Proteomics ; 18(5): 892-908, 2019 05.
Article in English | MEDLINE | ID: mdl-30808728

ABSTRACT

Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.


Subject(s)
Bronchi/pathology , Endocytosis , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/metabolism , Apoptosis , Bacterial Proteins/metabolism , Cell Line , Cytosol/metabolism , Epithelial Cells/ultrastructure , Host-Pathogen Interactions , Humans , Proteome/metabolism , Staphylococcus aureus/ultrastructure
20.
J Proteomics ; 193: 154-161, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30321607

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) originally emerged in nosocomial settings and has subsequently spread into the community. In turn, community-associated (CA) MRSA lineages are nowadays introduced from the community into hospitals where they can cause hospital-associated (HA) infections. This raises the question of how the CA-MRSA lineages adapt to the hospital environment. Previous studies implicated particular virulence factors in the CA-behaviour of MRSA. However, we hypothesized that physiological changes may also impact staphylococcal epidemiology. With the aim to identify potential metabolic adaptations, we comparatively profiled the cytosolic proteomes of CA- and HA-isolates from the USA300 lineage that was originally identified as CA-MRSA. Interestingly, enzymes for gluconeogenesis, the tricarboxylic acid cycle and biosynthesis of amino acids are up-regulated in the investigated CA-MRSA isolates, while enzymes for glycolysis and the pentose phosphate pathway are up-regulated in the HA-MRSA isolates. Of note, these data apparently match with the clinical presentation of each group. These observations spark interest in central carbon metabolism as a key driver for adaptations that streamline MRSA for propagation in the community or the hospital.


Subject(s)
Adaptation, Physiological , Metabolome , Methicillin-Resistant Staphylococcus aureus/metabolism , Virulence Factors/metabolism , Cross Infection/metabolism , Cross Infection/microbiology , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...